Scientific journal
Scientific Review. Fundamental and Applied Research

"SCHRODIGER CAT" AND ARTIFICIAL MEMBRANES IN PHARMACOLOGY

Denisov Yu. D., 1 Romanova R.R. 2 Denisov A.Y. 3
1 Kazak - Russion medical universety
2 Kazak - Russion medical universety
3 antiaging cenre "Promoitalia"
The study of the pharmacological properties of new drugs, as well as known drugs used in a new direction, is a well-studied process. However, the study of the effect of drugs on the physicochemical (biophysical) properties of biological membranes and, more importantly, their effect depending on the dosage of drugs is not well studied. The use of artificial membranes (lipid bilayer membranes, IMs) is a very convenient and ef-fective tool in such studies. In addition, IM is convenient in research due to the relative simplicity of their production, as well as the availability of determining the properties of drugs. However, the effectiveness of experimental research is higher with previous model experiments using mathematical modeling. In this article, the interaction model of the Mandelbrot and Julia sets was used to determine changes in the physicochemical proper-ties of IM under the influence of various doses of non-steroidal anti-inflammatory drugs (Diclofenac). The control was the state of the membrane without exposure to the drug. The result of the analysis of this mathematical model showed that changes in the structure of the membrane (its transition from one state - liquid crystalline to another - gel-like) are dose-dependent. And this characteristic is a super-position in the effects of Diclofenac in various doses.
: artificial membranes
pharmacology
di clofenac
mandelbrot plenty. julia plenty
fractal geometry

Целью предлагаемой статьи является анализ возможных математических моделей, таких как формирование фрактальных множеств, расчет суперпозиции в прогнозе действия лекарственных препаратов на физико – химические свойства искусственных мембран (ИМ).

Постараемся проанализировать возможности математических моделей.

Суперпозиция: ситуация, когда объект может быть одновременно в двух состояниях. Например, живой – мертвый; наблюдаемый – наблюдатель и т. д. Для более ясного понимания разберём следующий пример: исторический мыслительный эксперимент, предложенный в 1935 году Эрвином Шрёдингером под называнием «Кот Шрёдингера»: в ящик поместили кота, флакон с ядом, радиоактивный источник, детектор. Если детектор регистрировал излучение, то флакон с ядом разбивался и кот умирает. Если нет, то кот остается живым. По механике квантового мира до тех пор, пока мы не откроем ящик и не посмотрим на кота. Он находится в суперпозиции: одновременно жив и мертв. Только наблюдение определяет его судьбу.

В Австралийском университете (Квинсленд) предложили эксперимент (Кот наблюдает за нами, а не мы за ним»). Ученые создали квантовую систему, в которой роль кота играет атом, а в роли наблюдателя – свет. Атом может быть в двух состояниях: в основном и в возбужденном. Свет может быть в двух поляризациях: горизонтальной и вертикальной. Если свет попадает на атом, то он может изменить его состояние. Но если атом попадает на свет, то он может изменить поляризацию света.

Физики подготовили атом в состоянии суперпозиции – одновременно быть в основном и возбужденном состояниях. Затем они подготовили свет в состоянии суперпозиции: одновременно в горизонтальном и вертикальном. После этого ученые отправляли свет через атом и измеряли его поляризацию.

Оказалось, что свет был в состоянии суперпозиции до тех пор, пока атом «не посмотрел на него». Тогда свет «схлопнулся» в одно из двух возможных состояний: либо в вертикальное, или в горизонтальное. То есть атом определил судьбу света своим «наблюдением».

Это демонстрирует, что роль наблюдателя не обязательно должен играть человек или какое-то сложное устройство. Достаточно квантового объекта, такого как атом или фотон.

Этот эксперимент подвел нас к идее использовать мыслительный эксперимент Шрёдингера и физиков Кливленда в исследованиях искусственных мембран (ИМ).

Общее для всех фрактальных изменений – самоподобие: стартовой величины, прошедшая математические преобразования и итерации, образуют систему, развивающуюся и стремящуюся в бесконечность (его аттрактор – бесконечность). Каждая часть этой системы подобна отдельной его части. Эта система описывает множество Мандельброта. Данная модель, по нашему мнению, описывает движение процессов в клетке.

Другой стороной взаимосвязи фрактальности процессов функционирования мембран служит множество Жюлиа. В отличие от множества Мандельброта, аттрактором, к которому стремится данная система, является ноль. Система развивается внутрь себя, и таким образом, не переходя пограничную область.

Если это рассуждение перенести на искусственную мембрану, то получается, что множество Мандельброта описывает метаболизм в клетке, а множество Жюлиа – состояние мембраны.

При анализе состояния мембран возможны два состояния: жидко – кристаллическое состояние и геле-подобное. Внешне, физиологическое состояние мембраны – жидко – кристаллическое, так как в этом состоянии более эффективный обмен с межклеточным веществом, обменом электролитов и питательных веществ. Но тогда и структурная составляющая слабая, а значит и проникновение токсичных ксенобиотиков также упрощено, чего не происходит. А это значит, с точки зрения функционального состояния, более предпочтительно гелеобразная структура. Следовательно, к физиологическому состоянию мембраны должно больше подходить множество Жюлиа, а значит, суперпозицией является данное физико – химическое состояние мембраны.

Но встает вопрос: «А какое значение имеет знание о суперпозиции мембран»? Ответ может быть довольно практичным: это необходимо для выявления, каким образом можно менять свойства мембран фармакологическими средствами. И второе, возможное применение этого феномена – предложение, что измененное состояние мембраны может изменить состояние лекарственного препарата (вспомним слова австралийских ученых – физиков – «атом посмотрел на свет»). Безусловно, предположение требует экспериментального подтверждения, как требует, то что если феномен суперпозиции ИМ подтвердится, все физико – химические свойства и возможности их коррекции с помощью фармакологических средств и их аналогов также требуют экспериментального подтверждения.

В этой связи мы решили попробовать использовать в качестве математической модели взаимодействие множества Мандельброта и множества Жюлиа. Эти процессы оперируют комплексными числами и описывают переход от порядка к хаосу [1]. В медицине, с их помощью, можно описать переход от нормальной работы сердца к его фибрилляции [2].

При анализе соответствия физико – химического состояния биологических мембран и множестве Мандельброта (как и Жюлиа) мы имели в виду, что более мобильные характеристики мембран (жидкокристаллические) соответствуют множеству Мандельброта, а гелеподобное состояние мембраны соответствуют множеству Жюлиа.

Оба множества описываются одним уравнением, однако множество Мандельброта развивается в пространстве и его аттрактор равен - 1, а множество Жюлиа развивается внутрь множества и его аттрактор равен 0.

Работа математической модели с точки зрения анализа функции ИМ под действием лекарственных препаратов

1. Формула множеств Мандельброта и Жюлиа единая. Результат их применения приводит либо к множеству Мандельброта (хn+1 → ∞), либо множество Жюлиа (xn + 1 → 0; хn+1 →1);

2. В формуле множества Мандельброта – множества Жюлиа

Zn+1 = Zn2 + C

где:

Z0 – стартовая концентрация препарата;

C - константа Фейгенбаума в виде комплексного числа (или величина электрической ёмкости);

Если зафиксировать С и изменять Z0, в поле комплексных чисел, то мы получим множество Жюлиа. Если мы зафиксируем Z0 = 0, изменим параметр С, то мы получим множество Мандельброта.

Если Z0 , а также и другие концентрации препарата имеют характер действительных чисел, то С мы переводили в комплексное число, чтобы получить фрактальные характеристики Zn+1 .

Для перевода действительных чисел в комплексное, вводим в формулу следующие характеристики:

Zn+1 = Zn2 + C + 0i

Характеристикой С в начале данной работы мы выбрали константу Фейгенбаума, которая описывает соотношение бифуркаций при удвоении периода при переходе к детерминированному хаосу. Эта характеристика не связана ни с одной другой величиной. Исследования показали, что данная константа является одной из основных фундаментальных величин в природе. [2].

Мы предположили, что константа Фейгенбаума должна принимать участие в фрактальном процессе изменения физико-химических свойств мембран. Ее численное значение – 4,669.

При расчетах воздействия разных доз Диклофенака мы предположили три степени итерации: итерация-1 соответствует первичному воздействию препарата на свойства искусственных мембран, а итерация - 2 описывает повторное использование препарата. Итерация – 3 показывает третье использование препарата. Таким образом, мы проанализировали использование препарата в течение суток.

Однако, результаты моделирования говорили лишь о тенденции отношения воздействия разных доз препарата к одному из классов множеств.

Для большего практического значения исследований мы выбрали как константу С одну из характеристик биологических (а также и искусственных) мембран. Эта характеристика – величина электрической ёмкости мембраны. Её численное значение: 0,163 мФ*см-2.

Эту характеристику мы использовали т.к. она является функциональным результатом и плотности мембраны, и электрического сопротивления, а также величины электрического пробоя мембраны.

Результаты представлены в таблице 1.

Таблица 1. Трансформация концентраций Диклофенака в комплексных числах*

N

Обозначение уровня

дозировки

Выражение дозирования в мг

 

Итерация

- 1

 

Итерация - 2

 

Итерация - 3

0

Без Препарата

0

0.19 i

 

0.199 i

0.2 i

1

СТД – 1

 

25,0

(0,025 г)

0.164 i

0.164 i

0.19 i

2

 

СТД – 2

40,0

(0,04 г)

0.165 i

0.19 i

0.199 i

3

 

СТД – 3

50

(0.05 г)

0.164 i

0.190 i

0.165 i

4

 

СТД - 4

(14% от LD)

70,0

(0,07 г)

0,168 i

0,191 i

0,2 i

5

 

СТД – 5

 

100

(0.1 г)

0.173 i

0.164 I

0.19 i

6

 

LD50

(maxs)

500,0

(0,5 г)

0.413 i

0.334 i

0.275 i

7

 

Токсическая доза

(86% LD)

430,0

(0,43 г)

0.348 i

0.284 i

0.244 i

* – электрическая ёмкость ИМ (С = 0,163 мф*см2)

 

Алгоритм расчета: для выяснения действия разных доз препарата (в нашем случае, это Диклофенак) на физико – химические свойства ИМ мы возводили в квадрат стартовую концентрацию препарата и суммировали её с показателем или величины электрической ёмкости. Далее мы суммировали результат с последним элементом уравнения для перевода действительных чисел в комплексные.

Результаты моделирования показали, что ИМ относятся к множеству Жюлиа, поскольку величина состояния ИМ при «нулевой» концентрации препарата приближается к нулю. Та же тенденция была и при воздействии разных концентраций Диклофенака – они также образуют кластеры вокруг нуля. Однако, при концентрации Диклофенака в группах «500 мг» и группе «430 мг», при первой итерации, наблюдался сдвиг ИМ в сторону множества Мандельброта.

Первая итерации показывает на первичное действие препарата на ИМ. Если результат вычисления приближается к 0, то процессы и ИМ ведут себя как множество Жюлиа, а значит, ИМ работает как гелеподобная структура мембраны. Если бы результаты показали величину, близкую к единице, то можно было бы отнести их к множеству Мандельброта, а значит структура ИМ – жидко – кристаллического типа,

Дальнейшие итерации показывают вторичное и третичное использование данной дозы препарата. Те же вычисления проводились с препаратами в других дозах и итерациях.

Кроме того, мы рассчитали и «нулевое» воздействие препарата – т.е. изменение фрактальности при отсутствии препарата (таблица 1).

Анализе таблицы 1 показал, что при воздействии Диклофенака в первом обращении (итерации – 1) наблюдается достоверное снижение величины электрической ёмкости мембраны (ЭЕМ), практически при всех дозах. Некоторое исключение составляет группа СТД – 5 (100 мг) и при воздействии группы «Токсическая доза» и группы «LD50», при которых ЭЕМ значительно выше показателей всех других групп концентраций, включая контрольную группу («Без препарата»). Это можно объяснить трансформацией физико – химических свойств ИМ (трансформация из жидко – кристаллической структуры в гелеподобную структуру ИМ).

При итерации – 2 не столь выраженная монотонность изменений ЭЕ: она достоверно снижена в группе СТД – 1 (25 мг) и СТД – 5 (100 мг). Также, как и в итерации – 1, ЭЕМ ИМ в группах «Токсическая доза» (430 мг) и в группе «LD50», значение ЭЕМ значительно выше, чем в группе контроля («Без препарата»).

При итерации – 3 наблюдается недостоверное снижение величины ЭЕ при воздействии препарата во всех концентрациях за исключением группы «СТД – 3» (50 мг), величина ЭЕМ была достоверно ниже показателей всех остальных групп доз препарата. Как и при остальных итерациях, показатель ЭЕМ в группе «Токсическая доза и группе «LD50» выше, чем в других группах дозирования препарата.

Обсуждение результатов

Общая информация: Для полного понимания внутренней логики предлагаемого обсуждения результатов необходимо понимание фармакологических терминов.

Средне-терапевтическая доза Диклофенака – 50 мг. Стандартное использование данной дозы – три раза в день. В наших расчетах каждое использование мы посчитали как итерацию.

Токсическая доза, составляющая 86% от летальной – 430 мг, Мы включили также и минимальную, малоэффективную концентрацию Диклофенака при лечении взрослых (14% от LD – 70 мг).

Минимальная доза – 25 мг. Данная доза используется в педиатрической практике [3].

Максимальная доза препарата, которая близка к летальной – 500 мг.

В наших расчетах мы также использовали «нулевую концентрацию» препарата – т.е. ситуацию без препарата. В расчетах это контрольная величина для сравнения с остальными характеристиками препарата.

Полученные результаты показали взаимосвязь между дозой препарата и итерациями фрактального процесса.

Также была введена характеристики «нулевой концентрации» препарата как при одноразовом, так и при двух-трехразовом использовании Диклофенака. При «нулевой концентрации» препарата, мы прогнозируем изменения в физико - химическом состоянии мембраны.

СТД-3 (самая популярная доза препарата на начальном этапе лечения заболеваний соединительной ткани) лишь слегка меняет физико-химическое состояние (ФХС) мембраны. Однако при первой итерации, величина незначительно отличалась от «нулевой концентрации» (мы считаем, что эти показания являются еще одним контролем действия доз Диклофенака).

Итерация – 2 на 15,9% выше первой итерации. И это логично: второе применение Диклофенака, с точки зрения фармакологического влияния, более эффективно, чем первое. Однако, первый сюрприз ожидал нас при итерации - 3 (третье использование препарата) – величина ФХС, практически, вернулась к цифрам первой итерации. Это говорит о том, что при этой итерации ИМ компенсирует влияние препарата в СТД-3 на мембрану. Однако, другие концентрации препарата во всех итерациях не повторяют этого эффекта.

Другим интересным фактором является влияние СТД – 1 (25 мг препарата) – величина была равна таковой при использовании СТД-3 (50 мг препарата) в первой итерации. Это состояние продлевается и при итерации – 2. В третьей итерации данная величина практически, равна контрольной величине (группа без препарата). Однако, данная доза Диклофенака значительно менее эффективна, чем другие.

Близким результатом является концентрация препарата в СТД-2 (40 мг). При этом, и во второй, и в третьей итерации величина также практически, повторяет цифры контроля.

Повышая концентрацию препарата на 14% от СТД-4 (70 мг) можно наблюдать повышение ФХС мембраны и особенно при итерации 2 – 3.

Весьма интересные результаты получились при использовании данной математической модели СТД – 5 (100 мг). При концентрации, выше на 50% (СТД – 3), при итерации – 1, величина эффекта повышается лишь на 5,5% (по отношению к СТД – 3, итерация -1 - 50 мг). Иная картина наблюдалась при итерации -2: величина ФХС снижалась на те же 5,5% по отношению к первой итерации, но понижалась на 15,85% - по отношению к итерации – 3. Это может говорить о том, что при третьем приеме третья итерация (точнее, третий прием препарата) подводит физико – химические свойства мембраны к предсказанным, а контрольных расчетах без препарата.

При изучении максимальной дозы Диклофенака (концентрация приближается к LD50 на 1 кг массы тела мыши) – 500 мг. Анализ итераций 1 - 3 показал другую динамику развития фрактального процесса. Общая тенденция, как и в других группах концентраций, показывает, что Диклофенак активирует образование множества Мандельброта, а значит, усиливает процессы активации жидкокристаллической структуры мембраны. Однако, в данной группе концентраций препарата, активность развития данной структуры мембран значительно выше, чем в других концентрациях. О чем может говорить такое изменение ФХС мембраны? Скорее всего, о снижении процентного содержания насыщенных жирных кислот и, видимо, холестерина, которые формируют гелеподобное состояние мембраны. А вот динамика распределения величин в разных итерациях отличается от динамики распределения других концентраций препарата. В итерации -1 была наибольшая величина комплексного эквивалента дозы 500 мг. А во второй и третьей итерациях данная величина снижалась.

Та же тенденция наблюдалась и в группе концентрации 430 мг (86% от LD50). Возможно, Диклофенак в данных концентрациях разрушает мембраны клеток, приводя клетки к цитолизу. Подтверждение этого служит факт, что при электрическом заряде выше 200 мВ происходит электрический пробой мембраны.

РАЗМЫШЛЕНИЕ ОБ ИТЕРАЦИЯХ ИМ

Итерации – повторение какой-либо конкретной операции. В нашем случае, итерация – это повторное использование препарата при моделировании результатов воздействия препарата Диклофенака на физико – химические свойства искусственных мембран (ИМ).

При использовании НПВП, к которым относится и Диклофенак, эффект не может реализоваться даже к третьему использованию препарата. Однако, первая, вторая, третья итерации могут отражать количество недель, дней его использования.

С другой стороны, очень мало информации о действии Диклофенака на физико – химические свойства мембран клеток органов - мишеней. Однако, скорее всего, даже при одноразовом использовании препарата, Диклофенак действует на циклооксигеназу – 1,2 (ЦОГ-1,2), которая расположена на мембране клеток. Но в нашем случае это не влияет на эффект препарата: ИМ не содержат ни белков, ни ферментов в своем составе (исключая случаи, когда мы намеренно вводим их в структуру мембраны.

Перед анализом итераций обратим внимание на «0»-ю группу. В этой группе препарат не вводился в рабочую среду. Эта группа – чистое прогнозирование возможного воздействия препарата.

С третьей стороны, данная группа может прогнозировать состояние ИМ по времени. Согласно расчетам, величина электрической ёмкости мембраны, по отношению к другим группам дозирования -значительно выше, что говорит о том, что ИМ, даже без воздействия препарата функционирует. Наибольшее значение прослеживается при итерации – 3. Мы уже говорили, что повышение показателя ёмкости говорит о том, к какому состоянию ИМ относятся – чем выше показатель, тем бо??льшая вероятность того, что ИМ относится к гелеподобной структуре.

Однако, возможно, высокая величина может говорить о снижении защитной способности мембраны. Об этом говорят результаты моделирования последних двух групп (500 мг и 430 мг) – наибольшая величина этого показателя в первой и второй итерации. К этому стоит прибавить, что эти концентрации являются или смертельной дозой, либо токсической дозой данного препарата.

Анализ итераций показал:

При итерации – 1 (одноразовое действие препарата): при малых концентрациях (25 – 70 мг) нарастание показателя электрической ёмкости мембраны (ЭЕМ) практически не меняется (164 i – 165 i). При приближении к высокой дозе Диклофенака (70 – 100 мг) данный показатель начинает нарастать, приближаясь к контрольной («0»- группа).

При итерации - 2 другая картина: при минимальной концентрации Диклофенака (25 мг) изменений в показании ЭЕМ не наблюдалось, по отношению к итерации – 1, но далее идет значительное увеличение. Оно наблюдается до концентрации 100 мг, когда значение ЭЕМ вновь возвращается к концентрации диклофенака «25 мг». Кроме того, показатель ниже, чем при итерации – 1.

При сравнении итерации – 1, 2 наблюдается увеличение показателя ЭЕМ от 13,7% до 15,9%. Однако, концентрация препарата 100 мг снижает этот показатель на 5,2%. Однако, это можно трактовать как компенсацию функции ИМ.

Итерация – 3 стоит отдельно от первых итераций. Как видно из таблицы 1, итерация – 3 практически во всех группах дозирования ЭЕМ выше, чем в предыдущих итерациях на 15,2%. Исключение составляет группа «50 мг». В этой группе, при итерации -3, значение снижается на 13,2%. Видимо, эта доза позволяет восстанавливать структуру ИМ.

И, наконец, рассматривая группы «500» и «430 мг» мы наблюдаем снижение показателя ЭЕМ по мере рассмотрения итерации 1,2,3. Однако, даже при итерации – 3 эта величина превышает все показатели таблицы.

В начале статьи мы обращались к принципу суперпозиции (и, как иллюстрация, пример с «Котом Шрёдингера»). Согласно таблице, суперпозицию занимает итерация – 2. А в группах дозирования это 50 мг, так как показания ЭЕМ могут быть и относительно низкой (0, 164 i) и высокой (0,190 i ).

Альтернативный взгляд на действие Диклофенака в функции искусственных мембран

Основными формами молекулярного движения в биологических мембранах (БМ) является латеральная миграция (перемещение молекул в плоскости мембран, т.е. в пределах одной стороны биомолекулярного слоя) и вращение вокруг собственной оси (перпендикулярной плоскости мембраны). Скорости обоих процессов примерно такие же, как скорость свободной диффузии в вязкой среде [4].

Большой свободой движения обладают липиды, среднее пребывания фосфолипидной молекулы в данном пункте мембраны не более 10-7 секунды. Следовательно, мембранные липиды за счет латеральной миграции беспрестанно меняются местами, причем, каждая молекула меняет соседей миллион раз в секунду, передвигаясь со скоростью 5 – 10 мкм*сек-1. В жидкокристаллической структуре молекулярные перемещения совершаются скачками.

Кроме того, передвижение молекул из одного слоя в другой (флип -флоп передвижение) совершаются значительно реже, чем латеральная миграция. Разница в вероятности этих видов молекулярного передвижения в клеточных мембранах обеспечивают постоянное поддержание их ассиметрии, которая состоит в неодинаковом липидном и белковом составе их внутренней и наружной сторон. В результате таких воздействий может измениться кривизна клеточной мембраны. Еще более выражена ассиметрии в распределении мембранных протеинов и углеводов

Биологическим мембранам присущи свойства, такие как значительная прочность на разрыв (эластичность), поверхностное натяжение, вязкость, электрострикция и флексоэлектрический эффект (способность генерации электрических потенциалов на мембранах при их деформации). Эти характеристики говорят о наличии поверхностного заряда на БМ.

Скорее всего, именно латеральная миграция липидов, как и флексоэлектрический эффект меняются под действием препаратов, таких как Диклофенак. Эти изменения формируют условия перехода из одного физико – химического состояния ИМ (жидкокристаллического) в другой – гелеподобное состояние [4].

Поговорим об аттракторах

По нашим расчетам, в описываемом случае, мы имеем два аттрактора: минимальный – 0,163, который равен электрической ёмкости мембраны (ЭЕМ) и максимальный (мы не включаем ни «0»-ой уровень дозирования препарата, а также мы не включаем группы с максимальной концентрацией (450 и 500 мг) – 0,190 i,

О чем это может говорить?

Вернемся к биохимии мембран. ИМ – отличная модель для изучения воздействия электролитов, препаратов, которые действуют как через рецепторы, так и через действие ферментов, поскольку можно проследить реакцию самой мембраны на воздействие ксенобиотиков. С одной стороны, жидко – кристаллическое строение мембраны упрощает взаимодействие препаратов (электролитов, субстратов для ферментов и т.д.), но не учитывается тот факт, что при такой структуре встроенные в мембрану рецепторы, ферменты, ионные каналы связаны с мембраной значительно слабее, чем при геле - подобной структуре мембраны.

По нашей модели, активность ИМ по отношению к препаратам в разных дозах возможна из-за принадлежности ИМ к множеству Жюлиа, а значит, геле – подобной структуре. Возникает вопрос: «Почему высокие и очень высокие концентрации значительно выше средних показателей других доз Диклофенака?» Ответ на этот вопрос может дать только эксперимент. Однако, можно предположить, что эти концентрации просто изменяют структуру ИМ переводя ее в жидко – кристаллическую структуру

Видимо, и воздействие малых доз препарата также меняет структуру мембран как системы. В организме человека и животных высокие дозы настолько влияют на структуру мембран, что рецепторы (как и активный центр ферментов) меняют пространственную структуру, что инактивирует их. Дальнейшие итерации показывают, что клетка, как системная единица, пытается скомпенсировать состояние мембраны.

В заключении нашего «виртуального» исследования главным выводом является необходимость экспериментального подтверждения (или его отрицания) полученных результатов.

И последнее: данные аттракторы и являются суперпозицией в системе воздействия препаратов.